Strumenti Utente

Strumenti Sito


fisica:strumenti:gabbia_di_faraday

LAB2GO Scienza

Gabbia di Faraday

Con gabbia di Faraday si intende qualunque sistema costituito da un contenitore in materiale elettricamente conduttore (o cavo conduttore) in grado d'isolare l'ambiente interno da un qualunque campo elettrostatico presente al suo esterno, per quanto intenso questo possa essere.

È utilizzato il termine gabbia per sottolineare che il sistema può essere costituito, oltre che da un foglio metallico continuo, anche da una rete o una serie di barre opportunamente distanziate. È da osservare tuttavia che il corpo esterno non sarà altrettanto isolato come quello interno, poiché, la gabbia, essendo attraversata da una carica elettrostatica attiva, una volta raggiunto un elevato potenziale elettrico cercherà di scaricare l'eccessiva potenzialità su corpi vicini esternamente.

La scoperta

Nel 1836, Michael Faraday osservò che in un conduttore cavo, elettricamente carico, le cariche si concentrano sulla superficie esterna e non hanno alcuna influenza su ciò che si trova all'interno. Per dimostrarlo costruì una stanza rivestita da un foglio metallico e applicò dall'esterno l'alta tensione prodotta da un generatore elettrostatico. Utilizzando un elettroscopio mostrò che all'interno della stanza non era presente carica elettrica.

Funzionamento

Il funzionamento della gabbia di Faraday è spiegabile in funzione del teorema di Gauss che permette di descrivere la distribuzione di carica elettrica in un conduttore.(Il teorema del flusso, noto anche come teorema di Gauss, nella teoria dei campi vettoriali, afferma che i campi vettoriali radiali dipendenti dal reciproco del quadrato della distanza dall'origine hanno un flusso attraverso una qualunque superficie chiusa che dipende solo dalla carica in essa contenuta ed è indipendente dalla posizione interna delle cariche che lo generano.) Intuitivamente, poiché le cariche di segno uguale si respingono, esse tendono a portarsi alla massima distanza reciproca, che corrisponde alla situazione in cui esse sono concentrate alla periferia del conduttore. Se la superficie è approssimabile a un conduttore ideale (quale una superficie metallica chiusa), su di essa si determina una superficie equipotenziale, ovvero una superficie in cui il potenziale elettrico è identico in ogni punto, e il campo elettrico all'interno è nullo.

Si consideri ora il caso di una cavità nel conduttore: dal teorema di Gauss e della divergenza segue che il flusso del campo elettrico nella superficie interna delimitante la cavità deve essere nullo, non essendo presente carica all'interno. Si potrebbe supporre allora un campo elettrico solenoidale, ma ciò è impossibile per via del fatto che il campo considerato è un campo statico, e dunque a circuitazione nulla sulla superficie interna. Essendo questo campo privo di vortici e sorgenti, deve essere pertanto identicamente nullo.

Dal medesimo teorema di Gauss, deriva anche il principio di funzionamento del parafulmine a punta. Il potere delle punte è la tendenza delle cariche elettriche ad accumularsi dove la superficie è più piccola, essendovi il campo elettrico più intenso.

La gabbia di Faraday è meglio comprensibile come approssimazione di un conduttore cavo ideale. Campi elettromagnetici applicati esternamente o internamente producono forze sui portatori di carica (in genere elettroni) all'interno del conduttore, e le cariche vengono ridistribuite di conseguenza (e così si generano correnti elettriche di breve durata). Dopo che le cariche si sono ricollocate in modo da annullare il campo elettrico applicato all'interno, le correnti cessano. Se una carica viene posta all'interno di una gabbia di Faraday senza messa a terra, la faccia interna della gabbia diventa carica (allo stesso modo accade sulla faccia esterna per una carica esterna) per impedire l'esistenza di un campo all'interno del corpo della gabbia. Tuttavia, questa carica della faccia interna ridistribuisce le cariche nel corpo della gabbia. Questa carica la faccia esterna della gabbia con una carica uguale in segno e grandezza a quella posizionata all'interno della gabbia mentre sulla faccia interna ci sarà la medesima carica ma con segno opposto (si guardi l'illustrazione nella voce “conduttore elettrico”). Poiché la carica interna e la faccia interna si annullano a vicenda, la diffusione di cariche sulla faccia esterna non è influenzata dalla posizione della carica interna alla cavità della gabbia. Così la gabbia genera lo stesso campo elettrico che genererebbe se fosse semplicemente influenzata dalla carica posta all'interno. Lo stesso non vale per le onde elettromagnetiche, in cui campo elettrico e magnetico sono variabili nel tempo. Nel caso in cui la carica interna venga posta sulla superficie interna in un breve lasso di tempo i portatori torneranno a distribuirsi in modo uniforme ed equo sulle due pareti ma il conduttore non sarà più complessivamente neutro perciò metà della carica inizialmente nella cavità sarà sulla superficie interna e metà su quella esterna perciò le due pareti avranno medesima carica con lo stesso segno. Se la gabbia è a terra, le cariche in eccesso andranno alla terra invece che alla faccia esterna, per cui la faccia interna e la carica interiore si annullano a vicenda e il resto della gabbia manterrà una carica neutra e ciò costituisce un efficace dispositivo di sicurezza. Lo stesso accade se la carica in eccesso va a collocarsi sulla superficie esterna. Il modello precedentemente descritto si applica a campi statici. Quando la gabbia è attraversata da corrente elettrica, non si è più in condizioni di elettrostaticità e nel metallo sussiste una differenza di potenziale non nulla che permette la corrente stessa; in tali condizioni, vale la legge di Ohm e parte della corrente potrebbe attraversare un corpo posto al suo interno; questo rende la gabbia di Faraday uno strumento di protezione non infallibile.

Sitografia

Link Descrizione
Gabbia di Faraday Link integrativo
Esperimenti con la Gabbia di Faraday Link integrativo
Teorema di Gauss Link integrativo


fisica/strumenti/gabbia_di_faraday.txt · Ultima modifica: 2019/09/23 14:30 (modifica esterna)